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SUMMARY 
The flow of viscoelastic fluids through a porous channel with one impermeable wall is computed. The flow is 
characterized by a boundary value problem in which the order of the differential equation exceeds the 
number of boundary conditions. Three solutions are developed: (i) an exact numerical solution, (ii) 
a perturbation solution for small R, the cross-flow Reynolds number and (iii) an asymptotic solution for 
large R. The results from exact numerical integration reveal that the solutions for a non-Newtonian fluid are 
possible only up to a critical value of the viscoelastic fluid parameter, which decreases with an increase in R. 
It is further demonstrated that the perturbation solution gives acceptable results only if the viscoelastic fluid 
parameter is also small. 

Two more related problems are considered: fluid dynamics of a long porous slider, and injection of fluid 
through one side of a long vertical porous channel. For both the problems, exact numerical and other 
solutions are derived and appropriate conclusions drawn. 

KEY WORDS Viscoelastic fluids Finite differences Shooting method Flow through a channel Porous slider Flow 
through a vertical wall 

1. INTRODUCTION 

The study of flow of viscoelastic fluids has aroused considerable interest and controversy since 
Beard and Waltersl first considered the two-dimensional flow near a stagnation point. The focus 
of interest centred around the fact that the constitutive equations of viscoelastic fluids give rise to 
a Boundary Value Problem (BVP) in which the order of differential equation exceeds the number 
of boundary conditions. Thus, for the two-dimensional stagnation point flow the BVP character- 
izing the flow is 

f”’ +ff” + 1 -f” + k ( ff ” - 2 f ‘  f”’ +f”’) = 0, (1) 

f ( O ) = O ,  f ’ (O)=O,  f ’ ( c o ) =  1, (2) 

with the boundary conditions 

wherefis the dimensionless stream function, k is the non-dimensional viscoelastic fluid parameter 
and prime denotes the derivative with respect to q, the similarity variable. 

Beard and Walters’ proposed to resolve the difficulty associated with the higher order of the 
differential equation in comparison with the number of available boundary conditions by seeking 
a linear perturbation expansion for f as follows: 

f =so + kfl9 (3) 
where& is the solution corresponding to the Newtonian fluid and fi is the perturbation due to the 
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viscoelasticity of the fluid. It can easily be seen that if equation (1) is expanded up to the first-order 
term in k, it gives rise to a pair of BVPs in which the order of the highest derivative matches with 
the number of boundary conditions. The numerical solution of the resulting BVPs can be 
obtained by any integration routine. Beard and Walters' used the Runge-Kutta method to find 
the solutions forfo andf' . 

Since then, numerous other flow problems of viscoelastic fluids have been considered by 
various  investigator^.'-^ In all these investigations similar BVPs resulted, and the same approach 
as in equation (3) was chosen to solve the BVPs. 

The main conclusion of Beard and Walters' was that, for a viscoelastic fluid, the velocity in the 
boundary layer exceeds its value in the mainstream flow. This rather unexpected result naturally 
led to a controversy. Frater6 was of the opinion that the conclusion was faulty and its origin lay in 
the perturbation expansion given by (3). He gave an example demonstrating his point, though the 
example chosen by him was from a different context. The issue of the velocity overshooting its 
value in the mainstream, it was felt, could only be resolved by obtaining an accurate numerical 
solution of BVP (1) and (2). However, for a long time it was thought that any attempt to 
numerically integrate BVP (1) and (2) was destined to end in a failure, mainly because of the 
behaviour of the coefficient off'' in equation (1) near q=O, which is O(kq2) .  Serth' reported 
numerical instability when the integration routines such as the Runge-Kutta method or the 
predictor-corrector methods are tried. He, instead, used the collocation point method with 
different polynomials. Unfortunately, the number of trial functions in his velocity profile rose 
sharply with an increase in the value of k. Ng8 was able to reduce the number of trial functions 
dramatically by using the technique of goal programming, but then it was not clear as to which 
choice of collocation points would give the desired result. 

It was Teipel' who was first successful in obtaining the numerical solution of the BVP (1) and 
(2). He evolved a shooting method in which a Taylor series expansion was sought forfaround 
q = 0 in terms off"(0). This was used for developing the solution till q = 0.1. For values of q > 0.1, 
the usual Runge-Kutta method was used to obtain the solution. Teipel demonstrated that 
oscillations take place in the transverse velocity about its value in the mainstream, implying that 
the conclusions of Beard and Walters' were essentially sound. However, he had to exercise great 
care in supplying accurate initial conditions for the Runge-Kutta method. Thus, he had to find 
the ninth derivative of equation (1) to ensure the necessary accuracy. This probably explains the 
failure of early attempts to numerically integrate equation (1). It may be further remarked that 
Teipel's approach is likely to cause even greater problems when k+O, i.e. when the fluid is slightly 
non-Newtonian. The present author," on the other hand, gave an algorithm which is free of the 
above-mentioned drawbacks. What is particularly pleasing is the fact that the said algorithm is 
equally applicable for all values of k ,  including the cases k = O  and k+O. Use of this algorithm 
revealed that the solutions of BVP (1) and (2) exist only up to a critical value of k ,  say, k, ,  and that 
there are dual solutions for all non-zero values of k less than k,. These conclusions cannot 
possibly be derived by a linear perturbation analysis based on equation (3). This fact naturally has 
put under cloud the earlier investigations such as those in which were based on the 
perturbation technique. These problems being important physically need to be re-examined so 
that the study of flow of viscoelastic fluids may be put in the proper perspective. 

In the present paper our main endeavor is to study the flow of a viscoelastic fluid through a flat 
channel in which one of the boundaries is porous through which the fluid is injected at a uniform 
rate. The other boundary is assumed to be impermeable. This is a basic problem and, we believe, 
it provides an insight into the flow of viscoelastic fluids through the porous boundaries. As will be 
seen later, it also finds application in other technological problems. The flow of viscoelastic fluid 
through a porous channel was first considered by Shrestha,' who assumed both the walls of the 
channel to be porous with different permeability. He obtained a perturbation solution in the 
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limits of small k,  as well as small R, the cross-flow Reynold's number. In the present paper, using 
a slightly modified version of the algorithm given in Reference 10, an exact numerical solution is 
obtained without making any assumption on the size of k or R.  It is also shown that as far as 
a perturbation solution for small R is concerned, it is not essential to assume k small simultan- 
eously, in principle at any rate. Finally, utilizing the technique of matched asymptotic expansion, 
the solution is derived for large values of R. The results are compared using the various 
techniques. 

Recall that for the present problem we have assumed one wall to be impermeable. In the second 
part of the paper we intend to investigate the case when both the walls are porous, but the rate of 
injection at both the walls is same. Finally, in the third part of the paper the most general and 
difficult case of unequal rates of injection of the fluid at the two walls will be treated. 

However, in the present paper we have considered two more related problems of flow of 
viscoelastic fluid: (i) the fluid dynamics of a long porous slider and (ii) injection of fluid through 
a wall of a long vertical channel. For a Newtonian fluid these problems have been investigated by 
Skalak and Wang" and Wang and Skalak,' respectively. The exact numerical results obtained 
for all the three problems considered in the present work strongly point to the conclusion that the 
perturbation technique is not guaranteed to produce the correct results qualitatively or quantitat- 
ively, and that, the exact solutions (analytical or numerical) must be sought of the original set of 
equations, rather than those of the perturbed sets of equations. 

2. CONSTITUTIVE EQUATIONS 

In this paper we are mainly concerned with the flow of a particular class of viscoelastic fluids, 
namely, Walter's B' fluids. For these fluids, also known as elasticoviscous fluids, the constitutive 
equation is 

where pik  is the stress tensor, p is the scalar pressure at  a point and gik is the metric tensor of 
a fixed co-ordinate system xi. Finally P f k ,  in contravariant form, is given by 

pi,= -Pgik+Pik, (4) 

p"k = 2q0 eik - 2k02k .  (5 )  

In equation (9, eik is the rate of strain tensor defined by 

and Z i k  is given by 

where u i  is the velocity vector, and a comma denotes differentiation. Finally qo and ko are, 
respectively, the limiting viscosity at small rate of shear and the short-memory coefficient, defined 

qo=Iom N(z)dz, k o = I r  zN(7)d.r. 

N ( z )  being the distribution function with relaxation time z. 
For Walter's B' fluid with very short memories, the terms involving 

lom z" N ( z )  dz, n 2 2 

have been neglected. This factor has been taken into consideration in deriving equation (5). 
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Lastly, the equations of motion and continuity are 

p - + v ’ v f j  =-p . i+p:y  (E ) (9) 

and 

3. FLOW THROUGH A POROUS CHANNEL 

In this section we consider the laminar flow of an incompressible Walter’s B’ fluid through 
a channel bound by the planes y = 0, which is impermeable, and y = d,  which is porous. We take 
the direction of flow along x-axis. The fluid is injected through the porous wall with uniform 
velocity V. For the problem under consideration, equations of motion (9) and continuity (10) 
become 

and au a0 

a x  a y  
-+-=0,  

where ( u , ~ )  are the components of the velocity vector oi and pLx ,  ~ : ~ , p ; , ,  are the non-vanishing 
components of pliJ, and are given by 

a Z u  a2u 
a x  a x  axay ~ 7 + ~ - - 2  

( a u  a,) [ ( a2U +-- a”) + u  ( a 2 u  -+- a Z v )  -+- -ko u - a y  ax axay a x 2  a y 2  axay 

av azv a20 av au ao 
aY axay ayz ax dy ax P i y  = 2q0 - - 2ko [ 24- + v--- (- + -) - 2( 37. 

The boundary conditions on u and v are 

u(x ,  0) =o, 
v(x,  0) = 0, 

u (x ,  d) =o 
u(x,  d )  = - v. (14) 

Following the standard practice, we look for similarity solutions of equations (1 1H13) in which 
the stream function tj is given by (see, e.g. Reference 13) 

Y 
v=- j  
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and U o  is the entrance velocity defined by 

The velocity components u and u are then given by 

where a prime denotes a derivative with respect to q. 
Substituting for u and u from equation (18) into equations (11) and (12), we obtain 

where 

and 

[ f” - R f f ‘  + Rk(  ff’” - 3f’f’’)], aP V?O 
a?- d 
_- -- 

P Vd R = -  
?O 
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(17) 

are cross-flow Reynold’s number and dimensionless measure of viscoelasticity of the fluid, 
respectively. 

Integrating equation (20) with respect to 9 ,  we get 

2 R f 2  + Rk ( ff”- 2f”)] + P(x) ,  (23) 
p = - -  V?O [f’-’ 

d 

where P ( x )  is an arbitrary function of x.  
Differentiation of (23) with respect to x yields 

aP -=P‘(x) .  
a x  

Combining equations (19) and (24), we obtain 

[ f’”+ R (  ff”-f”) + Rk ( ff” -2f“f’” +f”’)] (25)  

It is clear that the quantity inside the brackets in equation (25) must be independent of q and, 
therefore, a constant, say A. Hence, we have the following BVP forf: 

f”‘ + R (  ff”-f‘2) + Rk(  ff” - 2  f’ f”’ +f”’) = A ,  (26) 
with the boundary conditions 

f(O)=O, f ‘ ( O ) = O ,  f(l)=l,  f’(l)=O, (27) 

which can be obtained by combining equations (14) and (18). 

K ,  being the viscoelastic fluid parameter. 
It may be remarked here that for a second-order fluid,fsatisfies an identical BVP, with k = - K ,  
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Using equation (26), P’(x)  can now be written as 

P ’ ( x ) = - -  z(y --uo ) 
which, when integrated, gives 

where p o  is the constant of integration. 

pressure: 
Inserting P(x)  from equation (28) into equation (23), we get the following expression for 

It is easy to see that the constant po  is, in fact, the pressure at (0,O). Thus, if one can solve the 
BVP (26) and (27) forJ the flow is completely determined from equations (18) which express the 
velocity distribution in terms off, and equation (29), which gives the pressure at  a point. In the 
next few sections, we give various solutions for f: 

3.1. Exact numerical solution for arbitrary R 

When k = 0, i.e. for a Newtonian fluid, equation (26) is a third-order differential equation. There 
are four boundary conditions on f given by equation (27). However, there is an unknown constant 
A in equation (26), which may, therefore, be regarded as the eigenvalue of the BVP (26) and (27). 
When k # 0, i.e. for a non-Newtonian fluid, equation (26) becomes a fourth-order differential 
equation, plus there is the unknown constant A.  There are still only four boundary conditions o f t  
Hence, we have a situation similar to the one corresponding to the two-dimensional stagnation 
point flow characterized by BVP (1) and (2). We can, therefore, apply the same numerical 
technique as given by the present author.’O 

Let us then introduce the quantities y as under 

Yl=L yz=f’, y3=f”, (30) 

Y ;  + R ( Y l Y ~ - Y ~ ) + R k ( Y l Y ~ - - Y z Y ; + Y ~ ) = A ,  (3 1) 

y1(0)=0, yz(O)=O, Yl(l)= 1, yz(l)=O. (32) 

qi=ih ( i = O , l , .  . . , N ) ,  (33) 

whence the BVP (26) and (27) can be rewritten as 

with the boundary conditions 

For the purpose of discretization, we set up a mesh 

where N is a suitable integer, and h( = 1/N) is the mesh-size. 
For the derivatives of y3 occuring in equation (31), we use the central difference formulae 

with an error O(h2).  
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Hence, equation (31) can be discretized to 

which can be explicitly solved for y Y 1  to yield 

-2hRy' ,  [ y {  - k (  $- y ',)I + 2h [ A  + R ( J ~ $ ) ~ ] } ,  

with a truncation error O(h3).  
y F 1  and y ( + l  can be obtained by discretizing the relations 

Y;=Y3> Y i = Y z ,  

y p = y ' ,  ++h(y' ,+yJ;+'),  

using the approximations 

y i" = y { + $h( y ', + y jz' ) 

the error in equations (38) and (39) being O(h3) .  
The boundary conditions (32) get transformed to 

(37) 

(38) 

(39) 

Note that in equation (36), the values of y, are at three adjacent mesh pointsj- l , j  andj+  1. If 
y :  is known, then in order to start the recursion, one also needs to know the value of y: .  This 
value can be obtained conveniently by seeking a Taylor series expansion off" around =O.  We 
have 

y: =fyh)  =fyo) + h f y o )  +- h2 f i v  (0) + o ( h 3 )  
2! 

=f" (0) + h ( A - R k [ f " ( O ) l 2 ) .  
It can be easily verified by differentiating equation (26) that f"(0) = O .  

Let 
f "(0) = s . 

Assuming s and A are known, y :  can be obtained from equation (41). y i  and y :  can then be 
found from equations (38) and (39) on making use of boundary conditions (40). From this point 
on, y', can be determined from equation (36) for j22 .  Thus, we obtain y: from equation (36), then 
y $  from equation (38) and finally y:  from equation (39). The cycle is repeated till y's are computed 
at all the mesh-points. Thus, we see that the problem reduces to the determination of the 
appropriate values of the quantities s and A such that the terminal conditions in equation (40) are 
satisfied. For this any zero-finding algorithm can be used. Two of the commonly used algorithms 
suggest themselves, namely, secant method and the generalized Newton's method. For the latter, 
one set of trial values suffices, but then at each iteration, the values of ay/as  and d y / a A  are also 
required. This roughly triples the size of the problem. On the other hand, for the secant method 
three sets of trial values are required to start the iteration, however, after this only one set of 
values of s and A is needed at each iteration. The starting values can be chosen as the same for the 
generalized Newton's method and a pair of slightly perturbed values. Though the convergence of 
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the Newton’s method is quadratic, there is still a substantial saving of CPU time using the secant 
method. We have, therefore, chosen it to compute the missing values off”(0) and A. 

The solution for f (and its derivatives), of course, depends on the choice of the physical 
parameters R and k. For k = O ,  the solution can be obtained by one of the standard techniques 
such as shooting method, quasi-linearization, finite differences, etc. It seems natural, for a given 
value of R,  to obtain the solution first for k=O,  and then to increase the value of k systematically. 
For non-zero values of k, the solution was obtained by using the algorithm outlined above. As 
a matter of fact, the algorithm can also be used with equal ease for k = O ,  at least for up to 
moderate values of R. Several values of R were chosen. For each of these values, k was increased 
from zero and corresponding values of s and A determined iteratively, along with the desired 
values off and f ’ .  No difficulties were encountered to begin with as only 6-7 iterations were 
sufficient to produce an accuracy of eight significant digits in the values of s and A. However, for 
values of k exceeding some critical value k, no convergence could be attained. Thus, we have 
a situation similar to one encountered in two-dimensional stagnation point flow of a viscoelastic 
fluid,” and this was true for all values of R, the cross-flow Reynold’s number. Anticipating the 
presence of turning points in the solution, once again the roles of s and k were reversed, i.e. rather 
than getting the values of s and A for given values of R and k, the values of k and A were 
determined for given values of R and s. The value of s was increased from the value off”(0) when 
k=O for a given R ,  and the corresponding values of k and A were calculated. The results are 
presented in Figure 1 in whichf”(0) is plotted against k for several values of R. One can note that, 
for each value of R, there is a turning point at k = k, which is dependent on R. For k > k, no 

0.0 0.4 0.8 1.2 
k 

Figure 1 .  Flow through a porous channel-variation ofj”(0) with k, the viscoelastic parameter for various values of R, 
the cross-flow Reynold’s number. Curve A R = 1, Curve B: R = 2, Curve C: R = 3, Curve D: R =5, Curve E: R = 10 
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solution exists, while for 0 < k < k, dual solutions exist. This conclusion, it can be seen, is in line 
with the one reported for the stagnation point flow." 

The dependence of k, on R is quite important. From Figure 1 it is clear that as R is increased, 
the value of k,  decreases. In Figure 2, k, is plotted against R on a logarithmic scale. It is most 
instructive to find that for large values of R, the value of Rk, becomes stationary. This fact has 
a vital bearing on the asymptotic solution for large values of R, which is presented in a later 
section. 

A slight modification is necessary in the implementation of the above algorithm for large values 
of R (  > 70). For these values, the shooting method becomes very sensitive to the trial values of 
s and A :  a slight perturbation in these values causing large changes in the values of y y  and y:, 
sometimes to the extent of resulting into machine overflow. This problem of numerical instability 
is not only apparent when k#O, but is also present when k=O. It was resolved by replacing the 
value of y 3  in the second term of equation (31) by the average at the adjacent nodes. Thus, for 
large values of R,  equation (35) gets modified to 

s' 1 - 2y$ + y J- 1 Y s +  - y j -  3 ' +(y: ) ' ]=A.  
2h 

-2 y{ 
h2 

(42) 

Note that equation (42) has the same order of truncation error as equation (35). In fact, it can be 
used for all values of R.  Solving equation (42) for y y ' ,  we get 

+ 2 hRk y $ (3 - y 4 ) + 2h [ A  + R ( Y $ ) ~ ]  1. (43) 

When equation (43) was used in place of equation (36), no difficulties were encountered for 
values of R up to 100. The higher values of R were not attempted. However, with a proper choice 
of the mesh-size h, we do not anticipate any difficulty for these values of R.  

3.2. Perturbation solution for small R 

In this section we present the solution for small cross-flow Reynolds number. These solutions 
have been extensively obtained in the literature and it would be of interest to find out how they 
compare with the exact numerical solution. In particular, one would be interested in knowing the 
range of values of R and k for which these solutions would give acceptable results. 

Expanding f and A in the form 

f = f o  + R f ,  + RZf2 + . ' * , 

A = A o + R A 1 + R Z A z +  

the BVPs forfi are 

(44) 
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and 
i -  1 

f : " +  C [f;:-if;-i-j-ft-i f f - l - j + k ( f i - l  f j Y 1 -  j-2f:- f7-1 - j+f f - l  ff-l-j)]=Ai 
j = O  

(46) 
f ,(O)=O, f f ( O ) = O ,  f,(I)=O, f;(l)=O, i =  1,2, . . . 

The solutions of BVPs (45) and (46) are straightforward. We list below the resulting solutions for 
fand  A up to terms of R 2 :  

8 27 3 
35 70 10 

f ( q) = 31' - 2q3 + R - 1' - - q3 + - 

76 1 2929 8 5  113 
+R"------ 646800 q 2 - m 0  q +-q 175 ---$ 2100 

- - q 3 + - q 6 - - q 7  12 3 6 
35 10 35 

A =  --[12+($-36k) R + ( s - - :  k )  R 2 ] + O ( R 3 ) .  

(47) 

It may be remarked here that Shrestha' first expandedfintof, andfi (see equation (3)) in order 
to derive the perturbation solution for small R.  He then obtained solution for bothf, andf, for 
small R.  As can be seen above, it should not be necessary, although the final expression obtained 
by Shrestha is in agreement with the one given in equation (47). 

1 10 
R 

Figure 2. Flow through a porous channel-variation of k,, the critical value of the viscoelastic parameter k, with R, the 
cross-flow Reynold's number. (W): the exact value of k,; (-----): the asymptotic value of k, for large R and satisfies k,R=y,  

where y is given by equation (62) 
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3.3. Asymptotic solution for large R 

R-. co, Rk remains bounded for admissible solutions. Letting 
The key point in deriving the asymptotic solution off for large R is the realization that as 

R k = a ,  (49) 

(50) 

equation (26) can be restated as 

f”‘ + R ( ff ” -f‘ ’ ) + c(( f f  ” - 2f’ f ’” +f”’) = A.  

For outer solution we write 

f = f o + E f 1 + E Z f 2 +  . . . , 

& = R - 112. 

A = A - z & - 2 + A - 1 & - ~ + A o +  . . . 

where 

Also let 

(53) 
The leading terms in the outer expansion are 

fo f b  -fb2 = A  - 2 9 (54) 

fof’;+f1f;;-2fbf; =A-1. ( 5 5 )  

It is apparent that the first two terms of the outer expansion are independent of the non- 
Newtonian fluid parameter. The solution of equation (54) is 

(56) 
. =? 7CL fo=sin-, A - 2 =  --. 

2 4 

It was first given by P r ~ u d m a n . ’ ~  

fl (1) =0, f ;  (1) = 0, we obtain 
Substituting for fo in equation (55) and using the boundary conditions at q = 1, namely, 

A - 1  =? f1=-(1-q)cos- 
71 2 

The constant A - will be determined by matching the two solutions. 
For the inner solution, we stretch both tj andfas  under 

(57) 

Writing 

F = F o + e F 1 + & 2 F z +  . ’ (59) 

(60) 

F,(O)=O, Fb(O)=O. Fb(co)= 1. (61) 

the BVP for F o  is 

F” + F o  F ;  + 1 - F;’ + f za(Fo F ;  - 2 Fb F 7 + FEZ) = 0, 

It can be recognized as the one which characterizes the Hiemenz flow15 for a viscoelastic fluid 
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with k=(1/2) nu. Its solution has been detailed by the present author," who has shown that the 
solutions are feasible only up to a critical value of the non-Newtonian fluid parameter. In 
particular, for the BVP (60) and (61) solutions exist for 

f na < 0.3257864 
or 

Rk < y , where y = 0.2074020. (62) 

No solutions exist for values of Rk exceeding y. This relationship between the problems of 
two-dimensional stagnation point flow and the flow through porous channel is instructive. It 
explains the non-admissibility of the solutions to the latter problem for values of the viscoelastic 
fluid parameter beyond a critical value. One may further verify from Figure 2 that the asymptotic 
value of Rk, approaches the value of y given in (62) as R-+cG. 

For large Y, the solution of BVP (60) and (61) is 

F o = Y + C ,  Y+m, (63) 
where C is a constant depending on a. For some selected values of a, C and Fg(0)  are given in 
Table I. 

Matching of the outer solution up to the term of O(E) and the leading term of the inner solution 
gives 

The BVP for F1, the next term in the inner solution for F in equation (59) is 

F T + F o  F - 2 F b F i + F g F 1  + na( Fo F -- 2 F b  F ;" 

+ 2 F F - 2F " F  i + F 6 F1) = 2 (2,'~) '" C (65) 

F,(O)=O, F;(O)=O, F;(m)= -(2/7~)l'~C. (66) 

Note that the above BVP has the same characteristic as the BVP (1)  and (2), namely that the 
order of the differential equation exceeds the number of boundary conditions. Nevertheless, it is 
linear, therefore its solution can be obtained non-iteratively as follows. 

Table I. Variation of FS(O),  C and F;'(O) with u 

0.00 
0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 
016 
0.18 
0.20 

1.232588 
1.270308 
1-312459 
1.360107 
1.414750 
1.478595 
1.555092 
1.6501 11 
1.775009 
1.957224 
2.3121 15 

-0.647900 
-0.621376 
-0.593340 
-0.563560 
- 0.531630 
- 0496960 
-0.458623 
- 0.415052 
-0'363219 
- 0.295834 
-0.182645 

0.955779 
0.96161 8 
0.967994 
0.975126 
0.983 186 
0.992340 
1.003056 
1.015482 
1.0298 16 
1.044227 
1.0283 17 
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We write 
F1 = G + P H ,  

where G and H satisfy the initial value problems (IVPs) 

G”‘ + F o  G” - 2 F  b G’ + FE G +$lta( F o  G” - 2 F b G”’ + 2 F  ;; G” - 2F;;’G’ + F 6 G) = 2(2/n)’I2 C ,  

(68) 
G(O)=O, G’(O)=O, G”(O)=O 

and 

H“‘ + Fo H “  - 2 F b H ‘  + F { H + f Z M ( F ,  H i v  - 2 F b H“‘ + 2 F H“  - 2F H ’  + F 6 H )  = 0, (69) 
H(O)=O, H’(O)=O, H”(O)= 1. 

It is easy to see that j? can be identified with F;(O).  It can be determined from the terminal 
condition and is given by 

The IVPs (68) and (69) can be integrated numerically by following the procedure given in 
Section 3.1 of Reference 10. can then be calculated from equation (70). Finally, F ,  can be 
obtained from equation (67). In Figure 3, the plots of F1 and F\ are given for various values of M. 
Also in Table I, the values of F;(O)  are presented. It can be seen from Figure 3 that F1 shares 
many properties with F o .  For example, as k increases F’;(0) also increases, except near a=O.2, 
where there is a turning point in the solution for F’.’’ Also, in the profiles of F ; ,  there are 

Y 
Figure 3. Flow through a porous channel-variation of F1 and F ; ,  the first-order terms in the asymptotic expansion of 
fandf’, respectively, with Y for various values of a (= Rk). (-): the values of F;; (-----): the values of F, . Curves a: a =0, 

Curves b a=0-1, Curves c: a=D2 
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oscillations of increasing amplitude as k is increased. The main difference, of course, is in the 
asymptotic value of F as Y+ co. For F b this limit is always unity; however, for F', , because of 
the decreasing value of - C with k, it approaches smaller asymptotic value as k is increased. 

The asymptotic solution of F1 for large Y is 

where D is an appropriate constant dependent on ci, 

solutions. We have 
The composite solution, which is uniformly valid, can now be written by combining the two 

F ,  enters in the expression forf'(q) as follows: 

Thus, the expressions for both u and v (given by equation (18)) are obtained correctly up to 
O ( 2 ) .  Undoubtedly, the process of matched asymptotic expansion can further be carried out, but 
it becomes increasingly complicated. We shall not be pursuing it beyond the terms of O(E). 

3.4.  Results and discussion 

In Figures 4 and 5, f andf' are plotted against q for various values of R and k. Three typical 
values of R are chosen in these figures: 1,10,100. They correspond to small, moderate and large 
values, respectively. Further, keeping in view the restriction (62), three values are chosen for 
o! (= Rk): 0,Ol and 0-2. One can see that for small values of R ,  the cross-flow Reynold's number, 
bothfandf' remain relatively unaffected by viscoelasticity of the fluid. Its effect on the flow is felt 
more for large values of R. In general, an increase in either the value of R or k leads to an increase 
in f, the transverse velocity. The plots off', on the other hand, show an increase in f' with 
increasing R or k near the impermeable wall, but a decrease near the porous wall. Of particular 
interest is the fact that for a viscoelastic fluid,f' exhibits an oscillatory character if the values of 
the cross-flow Reynold's number are sufficiently large. This is not surprising and it follows from 
the asymptotic behaviour of the inner solution near the impermeable wall (see equation (73)). 

In Table 11, a comparison is presented of the values off"(0) andf"'(0) obtained by (i) exact 
numerical integration, (ii) perturbation solution for small R and (iii) asymptotic solution for large 
R,  for various values of R and k. It can be seen from the table that the perturbation solution for 
small R gives reasonable results for value of cross-flow Reynolds number up to unity provided the 
value of the non-Newtonian fluid parameter is also small (up to 0.2). For moderate values of the 
non-Newtonian fluid parameter (say, unity), there is a considerable discrepancy in the exact 
numerical solution and the perturbation solution for small R. 

It has been shown that for a viscoelastic fluid, the results, for a given R, can be obtained only up 
to a critical value of k (= kJ. This sheds new light on the earlier investigation undertaken by 
Shrestha,' who has given, for k =O2, the values off"(0) for the values of R up to 4. It appears that 
in view of Terrill and ShresthaI6 having demonstrated the perturbation solution (47) to be 
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1 

0.8 

0.6 

f 

0.4 

0.2 

0 
0.2 0.4 0.6 0.8 1 

tl 
Figure 4. Flow through a porous channel-variation off, the transverse velocity with 9 for various values of R,  the 
cross-flow Reynold's number, and k ,  the viscoelastic parameter. (-): the values off for a non-Newtonian fluid; (-----): the 
values for a Newtonian fluid. Curve a:  R =  1 ,  k=O; Curve b: R =  1 ,  k =0.2; Curve c:  R =  10, k=O; Curve d:  R =  10, k =0.01; 

Curve e: =lo, k=0.2;  curve f :  R=100, k = Q  Curve g: R=100, k=0.001; Curve h: R=100, k=0.002 

reasonably accurate for values of R up to 9 for a Newtonian fluid. Shrestha' presumed the same 
for viscoelastic fluids as well. The present work, however, demonstrates that this assumption is 
not justified, as for k = 0.2, the solution is admissible for values of R up to 2-56 only. 

On the other hand, for large values of R,  it can be seen from Table I1 that the asymptotic 
solutions (72) and (73) can be used if R is greater than 20-30, provided Rk < y. For larger values of 
k, of course, the solution does not exist. It may be added here that for Newtonian fluids the 
asymptotic results for large R given in Table I1 are more accurate than those reported by Skalak 
and Wang," since we have also included the term of F1 in our calculations. 

For the problem at hand, the physical quantities of interest are the stresses at the wall of the 
channel, which are expressed in terms off"(0) andf "( l ) ,  and the pressure drop along the channel. 
The values of the former are given in Table 11. The latter, in the non-dimensional form, is given by 

where 
X P Uod (=; and Re=-  

?O 
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4 

3 

f '  

2 

1 

C 
0 0.2 0.4 0.6 0.8 1 

Figure 5. Flow through a porous channel-variation off', the lateral velocity with q for various values of R ,  the 
cross-flow Reynold's number, and k, the viscoelastic parameter. (-): the values off for a non-Newtonian fluid; (-----): the 
values for a Newtonian fluid. Curve a:  R = l ,  k = Q  Curve b: R = l ,  k=0*2; Curve c: R=10, k=O; Curve d: R=10, 
k=0.01; Curve e: R=10, k=0.02; Curve f:  R=100, k = O  Curve g: R=100, k=OGOl; Curve h: R=100, k=0.002 

are, respectively, the non-dimensional distance along the channel and the mainstream Reynold's 
number. 

fixed, it is evident from equation (74) that the pressure drop is 
proportional to A. Hence, as the viscoelasticity of the fluid increases, the pressure drop decreases. 

Keeping R, Re and 

4. FLUID DYNAMICS OF A LONG POROUS SLIDER 

In the present section we consider a long porous slider using the viscoelastic fluid. Porous sliders 
are becoming increasingly important due to their attractive performance and their application in 
fluid-cushioned moving pads." The fluid dynamics of a long porous slider using Newtonian fluid 
has been studied by Skalak and Wang." For other shapes of sliders, Wang and his co-workers 
have contributed a sequence of papers."-" 

We consider a long porous slider of dimensions L1 and L2.  The fluid is injected through the 
slider so that a film of thickness d is formed. The lower plate of the slider is moving laterally in the 
plane z=O with velocities - U and - V along x- and y-directions, respectively. It will further be 
assumed that L2% L1 % d ,  so that the end-effects can be neglected. 
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Skalak and Wang” have shown that the Navier-Stokes equation for Newtonian fluid admit 
a similarity solution if the velocity components (u, u, w) are so chosen that 

where 

is the dimensionless distance normal to the slider. 
For the viscoelastic fluid too it can be verified by substituting the values of u, u and w in 

equations (9) and (10) that a similarity solution is possible. With the usual definition of R,  the 
cross-flow Reynold’s number, one can show that f, g and h satisfy the following BVPs: 

f’” + R (  ff” - f ’ 2 )  + Rk ( ff” - 2 ff’” +f”’) = A ,  

g” + R (  f g ’ - f ’ g )  + Rk( fg”’-f’ 9’’ +f”g’ - f”‘g)  = 0, 

h“ + R f h ‘  + Rk(  fh“‘ - 2 f ‘  j“ - f“h’)  = 0, 

with the boundary conditions 

f ( O ) = O ,  f ’ ( O ) = O ,  f(l)=l.  f’ ( l )=O,  
g(0) = 1, g(l)=O, h(0) = 1 ,  h(l)=O. (80) 

The pressure p at any point is given by 

The above set of equations, it may be remarked, is a particular case of the set of corresponding 
equations derived by Bhatt” for an elliptical porous slider using a second-order fluid. Bhatt 
obtained the first-order perturbation solution assuming R small. 

4.1. Exact numerical solution 

It can be seen that the BVP forfgiven by equations (77) and (80) is exactly the same as the one 
given by equations (26) and (27) in Section 3. Its solution has been discussed in detail there. 
Therefore, we need to consider the solutions of the BVPs for g and h only, which are given by 
equations (78H80) 

Note that the differential equations for both g and h are linear, but they have, by now the 
familiar characteristic of having their order higher than the number of boundary conditions. We 
can follow the procedure of superimposition given in Section 3.2 to obtain the numerical 
solutions for g and h. Thus, in order to obtain the solution for g, we write 

9=91+B92, (82) 
where g1 and g2 satisfy the IVPs 

9’; + R ( fg; -f’gl) + Rk( fg;l’ -f‘ g‘; + f ” g l  - f”’gI) =O,  

g1(0)= 1, g;(o)=o. 
(83) 
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and 

p in equation (82) can now be identified with g’ (0 )  and is given by the terminal condition 

It is worth pointing out here that for a Newtonian fluid (k=O)  equation (78) can be integrated 
backward with any missing initial condition for g’( 1) because it is a homogeneous differential 
equation. The values of g can then be normalized by dividing the set of values of g by the value of 
g obtained at the terminal point q = 0 by numerical integration. This economy, unfortunately, is 
not available here, as equation (78) can only be integrated forward, at least, by the techniques 
reported so far in the l i t e r a t ~ r e . ~ ~ ’ ~  If we follow the discretization scheme given by Ariell’ then 
we need to compute the values of g 1  and g 2  at the first integration step by using the Taylor series 
expansion of g 1  and g 2  up to the second derivative around q=O. Other than that, the finite 
difference equations for g ;  and g ;  involve their values at three adjacent mesh points j -  1 , j  and 
j +  1 ,  while those for g 1  and g 2  involve the values at the adjacent mesh-pointsj andj+  1.  One can, 
therefore, adopt the procedure described in Section 3.1 to compute the values of g1 and g z  at each 
mesh-point. The value of /I is determined from equation (85) and, finally, g can be obtained from 
equation (82). A similar approach is taken to compute the values of h numerically. 

Note that the solutions for g and h are restricted to a range of values of k less than a critical 
value k, .  This is dictated by the corresponding restriction imposed on the solution for f: 

4.2. Perturbation solution for small R 

We seek a perturbation solution for g and h given by 

Substituting forffrom equation (44) and for g and h from equation (86), we get the following 
BVPs for g and h 

and 
i -  1 
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Equations (87) and (88) can be readily integrated to yield 

+ R 2  [ 16q+8q3--44+-q5--‘16+-97-_18 383 9 1 1 19 +-q9 2 
315 105 1680 70 20 20 560 315 

+9k2q(l-q) +O(R3) 
10 1 (89) 

and 

11 

The expressions for g and h reduce to the corresponding results for a Newtonian fluid (k=O) 
derived by Skalak and Wang.” However, for a second-order fluid, the first-order results of 
Bhatt” seem to be in error; his expression forfdoes not satisfy the boundary conditionf(1) = 0. 

4.3.  Asymptotic solution for large R 

For proper asymptotic solutions of g and h, one should bear in mind, that these solutions are 
only possible for the values of Rk less than a certain quantity, which approaches the value 
y defined by (62). This restriction is inherited from the solution for$ Equations (78) and (79) are, 
therefore, written as 

(91) 

(92) 

g” + R ( fg’ -f’g) + CI ( fg‘” -f ‘ g” +f”g’ -f’”g) = 0, 

h” + R f ‘  +a( fh”‘ - 2f’h” -f” h‘ ) = 0, 

where c1 is given by equation (49). 
For outer solution, one writes 

9=go+Eg1+EZg2+ . . . 
h=ho+&h1+E2h2+ . . . 

E being defined by equation (52). 
The first two terms of the outer expansion satisfy the BVPs 

fo sb -fog0 = 0, go (1) = 0 7 

f o  g; +fl sb -Yo 91 -f; go = 0, g1(1) = 0, 

fohb=O, h,(l)=O, 
f,h;+flhb=o, h,( l )=O. 

(93) 

(94) 
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The only solution of the above system is 

g o = g 1 = 0 ,  h o = h 1 = 0 .  

For the inner solution, we seek the expansions of g and h as under 

g = G o ( Y ) + & G I (  Y)+&'GZ( Y ) +  . . . 
h = H o (  Y)+&H1(  Y ) + & 2 H 2 (  Y ) +  * .  . , 

where Y is the stretched variable already defined by equation (58). 
The BVPs for Go and H o  are 

(95) 

GE + F o G b  - F b  Go ++ ~ a ( F o G y  -F',GE + F g  Gb- F ;  Go)  = O ,  

H :  + FoH6 ++ aa(FoH$ - 2 F b H L  - F:Hb)=O,  

(97) 

(98) 

Go(O)= 1, Go(w)=O, Ho(O)= 1, H o ( w ) = O .  (99) 

t 100) 

with the boundary conditions 

If equation (60) is differentiated with respect to Y, it yields 

F 6 + Fo F $ - Fb Fg + + za(Fo F - F b F 2 ) = 0, 

from which it is easy to see that Go = F 6 satisfies equation (97). Hence, the appropriate solution of 
Go satisfying boundary condition (99) is 

A similar result holds for Newtonian fluids and this has been demonstrated by Skalak and 
Wang." 

Unfortunately, for a viscoelastic fluid, the solution for H o  is not as simple as that for 
a Newtonian fluid, for which it can be expressed in terms of double quadrature. Equation (98) 
must be integrated numerically marching forward. The technique of integration is similar to the 
one enunciated in Section 3.3. In Figure 6,  the solution curves for H o  are given for various values 
of a. Note that for non-zero values of a there are oscillations in Ho,  their amplitude increasing 
with a. This is, indeed, expected, for Go,  the corresponding function along x-axis also has similar 
oscillations in view of the oscillations in Fb(Y) ,  and consequently in F g (  Y ) .  

4.4. Results and discussion 

In Figures 7 and 8, g and h, the lateral velocity components along x- and y-axes are plotted for 
various values of R and k. It can be seen from the figures that in contrast to the plots offandf', 
those of g and h are distinguished by oscillations for non-zero values of k and sufficiently large 
values of R. This behaviour can only be found out by either the exact numerical solution or the 
asymptotic solution for large R. One may also note from Figure 7 that there is a crucial difference 
in the nature of g ,  the lateral velocity along x-axis for small, moderate and large values of R. For 
small R, g increases with k for all values of q. While for moderate values of R,  g decreases with 
k for all values of v .  However, for large values of R, g first decreases with k for smaller values of q, 
but then as q is increased, the oscillations take place the amplitude of which increases with k. 

For h, the lateral velocity along y-axis, a similar behaviour can be seen, except for a small 
though important detail. We note from Figure 8 that for small values of R, h first increases with 
k up to certain value of q (which depends on k), but for values of q larger than this value, h actually 
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Figure 6. Flow in a porous slider-variation of H o ,  the zeroth-order asymptotic solution for h, the lateral velocity along 
y-direction with Y, for various values of a (=Rk). Curve a: z=O, Curve b: ct=O.l, Curve c: a=0.2 

-0.24 
0 0.2 0.4 0.6 0.8 

rl 
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Figure 7. Flow in a porous slider-variation of g, the lateral velocity along x-axis with 1 for various values of R, the 
cross-flow Reynold's number, and k, the viscoelastic parameter. (-): the values for a non-Newtonian fluid (----) the values 
foraNewtonian lluid.Curvea:R=l, k=O;Curve b: R = l ,  k=O.l;Curvec: R=l,k=0.2;Curved:R=lO, k=O;Curvee: 
R =  10, k=0.01; Curve f R=  10, k=@02; Curve g: R =  100, k = O ;  Curve h: R = 100, k=0.001; Curve i: R=  100, k=0.002 
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Figure 8. Flow in a porous slider-variation of h,  the lateral velocity along y-axis with q for various values of R,  the 
cross-flow Reynold’s number, and k, the viscoelastic parameter. (-): the values for a non-Newtonian fluid; (----) the values 
fora Newtonian fluid. Curve a: R =  1 ,  k = O ;  Curve b:  R =  1, k=0.2; Curve c: R =  10, k=O;Curve d: R =  10, k=0.01; Curve 

e:  R = 1 0 ,  k=002;  Curve f :  R=100 ,  k=O; Curve g :  R = 1 0 0 ,  k=O001; Curve h: R=100, k = 0 9 0 2  

decreases with k. This has an important bearing on the value h’(1) in contrast to that of g‘(1). For 
all values of R, -h’ (1) decreases with k.  However, -g’(l) decreases with k for only moderate to 
large values of R. For small values of R it actually increases with k. 

In Table 111, the values of g’(0) and h’(0) are presented for various values of R and k using 
(i) exact numerical solution, (ii) perturbation solution for small R,  and (iii) asymptotic solution for 
large R. As in the case of flow through a porous channel, the perturbation solution gives 
acceptable results for values of R up to unity, only for small values of k (<0*2). The asymptotic 
solutions given by equation (101) and the numerical solution of equation (98) can be used for 
values of R exceeding 20-30, provided RK < y, y being given by equation (62). 

For a porous slider, the important physical quantities are lift L and the drag with components 
(Dx ,Dy) .  They are given by 

where pa  is the pressure at the edge of the slider. 
As noted above, the behaviour of -g’(l) and - h’(l), in particular, that of the former, depends 

to a large extent on the values of R for a given value of k. These quantities figure in the expressions 
for drags D, and D,. Therefore, we must make a distinction between the cases R = 0(1) and R % 1. 
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Table 111. Variation of g'(0) and h'(0) with R and k using (i) exact numerical integration, (ii) 
perturbation solution for small R, and (iii) asymptotic solution for large R 

R k g'(0) h'(0) 

Exact Perturbation Exact Perturbation 

0.2 0 
0.1 
0.2 
0.5 
1-0 

0.1 
0.2 
0.5 

0.1 
0.2 

1 0 

2 0 

20 0 
0.005 
0.0 1 

25 0 
0.004 
0.008 

0.002 
0.004 

0001 
0.002 

50 0 

100 0 

- 1.088029 
- 1.030257 
- 0.964666 
- 0.700942 

0257879 

- 1.405982 
- 1-155383 
-0541463 
- 3'660024 

- 1.744503 
- 1.291448 
- 5'04855 1 

Exact 

- 4-7921 83 
- 5.272382 
- 6384905 

- 5.329621 
- 5884728 
- 7 14 1706 

-7-438635 
- 8'270269 
- 10334113 

- 10419938 
- 11'625380 
- 14'640878 

- 1.087968 
- 1,030254 
- 0965340 
-0.727397 
-0186825 

- 1.399206 
- 1.156349 
-0.733492 

1.615079 

- 1.696825 
- 1'355397 
-0.233968 

Asymptotic 

- 4.472 136 
- 5.092555 
- 6.495494 

- 5.084077 
- 5.693648 
-7'262183 

- 7.18997 1 
- 8.052035 
- 10.270278 

- 10.168154 
- 11.387297 
- 14.524367 

- 1.030147 
- 1009208 
- 0.986014 
-0.899598 
- 0-680271 

- 1.153102 
- 1.029846 
- 0-79585 1 
- 0.076074 

- 1.309633 
- 0.97 1497 
- 0.19 19 10 

Exact 

- 3.352567 
- 3.585275 
- 3.585874 

- 3.732558 
- 4.007 30 1 
- 4.289630 

- 5.220342 
- 5.62 1608 
- 5.83 1044 

- 7-3 19998 
-7.892178 
- 8.3 15064 

- 1.0301 52 
- la09170 
- 0.986107 
-0.904438 
-0.726724 

- 1.153810 
- 1.029238 
-0.852667 
- 0.010952 

- 1.31 5238 
- 1.016952 
- 0510667 

Asymptotic 

- 3.197453 
- 3.46 1947 
-4.050210 

- 3.57486 1 
- 3-870575 
-4.528273 

- 5-05 56 1 7 
-5.473819 
- 6.403945 

- 7.149722 
- 7.741 149 
- 9.056546 

Also, as pointed out by Wang," the currently available sliders operate at  cross-flow Reynold's 
number less than unity; therefore, such a distinction would indeed be appropriate. 

In Figure 9, the normalized values of L, D, and D, are plotted against R in the range 0.1 d R < 1 
for various values of k. It can be seen from the figure that both, the lift L, and the drags D, and D, 
decrease with R for a given value of k, the ratio of lift and drag, represented by the distance 
between the curves on the log-scale, being larger for smaller values of R. Therefore, the original 
conclusion of Wang and his co-workers,"*'8-2' namely that, for optimum efficiency, the porous 
sliders should be operated at small values of R, rather than at moderate values, still remains valid 
even when the viscoelastic fluid is used. 
To see the effect of fluid viscoelasticity on the performance of the slider, we note from Figure 9, 

that for R < 1, the value of L decreases with increasing k, keeping R fixed. Also the value of D, 
decreases with increasing k for a fixed R, but that of D, increases as k is increased. Thus, if the 
viscoelastic fluid is to be used for porous sliders operating at low cross-flow Reynold's number, it 
is advantageous to move it along y-axis, rather than along x-axis, which is the preferred way for 
a Newtonian fluid. 
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Figure 9. Flow in a porous slider--variation of the normalized lift t( = 1 2 q ; L / p  W4L:  L2),  the normalized drag 
components Ds (=D,/p U WL, L2) and Dr(=Dy/p YWL, L,) with R ,  the cross-Row Reynold's number, for various values 
of k, the viscoelastic parameter. (-): the values for a nowNewtonian fluid; (-----): the values for a Newtonian fluid. 
Curve a: t f o r  k=O,  Curve b: t f o r  k=O.l,Curvec: t f o r  k=O.Z,_Curved: Dxfor k=O,Curvee: Ox for k = @ 1 ,  Curvef: Ds 

for k=0.2, Curve g: Dy for k = O ,  Curve h D, for k=0.1,  Curve i: Dy for k=0.2 

The situation changes when large values of R are considered. Wang and his co-workers,". "M' 
for a Newtonian fluid, have also pointed out that the performance becomes progressively better 
as the value of R is increased beyond a critical value. For this critical value the porous slider's 
efficiency is minimum. In Figure 10, the normalized values of L, D ,  and D, are plotted for R 2 1. 
For a given value of k, the distance between the curve L on the one hand and the curves D,  and D, 
on the other keep on narrowing up to R = 4 ,  implying a loss of efficiency, but for larger values of 
R, this distance keeps on widening. This means that the observations of Wang and his co-workers 
for large values of R still hold for viscoelastic fluid. One can see from Figure 10 that the effect of 
viscoelasticity is felt most on the drag. The lift decreases with an increase in k only marginally, but 
the drags in both the directions decrease drastically for values of R near 10 as k is increased. It is 
remarkable that an increase in the value of R reverses the role played by viscoelasticity on the 
drag in x-direction; for lower values of R, D, increases with an increase in the value of k; but, for 
higher values of R, the opposite is true. Though at present the porous sliders are designed to 
operate at values of R up to unity, in future, as and when they become available for large values of 
R, the use of viscoelastic fluids can lead to their much improved performance. 

5. FLUID INJECTION THROUGH ONE SIDE OF A VERTICAL CHANNEL 

In this section, we consider the flow of Walter's B' fluid injected through one side of a long vertical 
channel. We assume one wall of the channel to be impermeable and situated in the plane y=O, 
centred at the origin. The fluid is injected through the porous wall y = d with uniform velocity V.  
Since the gravity effects are taken into account, the fluid flows out of the sides and the bottom of 
the channel. The dimensions of the channel walls are L1 and L2 along x- and z-directions, 
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Figure 10. Fl2w in a porous slider-vgriation of the normalized lift L ( =  1 2 q i L / p W 4 L : L 2 ) ,  the normalized drag 
components D, (=D,/p U W L l L 2 )  and Dy( =D,/p V W L l L 2 )  with R, the cross-flow Reynold’s number, for various values 
of k, the viscoelastic parameter. (-): the values for a non-Newtonian fluid; (-----): the values for a Newtonian fluid. 
Curve a: for k=O. Curve b: tfor k=0.002, Curve c: Dx for k=0.2 ,  Curve d: 4 for k=0.001, Curve e: Dx for k=0.002, 

Curve f: D,, for k=O,  Curve g: for k=0-001,  Curve h: Dy for k=0.002 

0*25/ 

0.2 

0.15 

0.1 

h 
0.05 

0 

0.2 0.4 0.6 0.8 
-0.05b- 

9 
1 

Figure 11. Injection of fluid through the side of a long vertical channel-variation of h, the lateral velocity along vertical 
direction with 7 for various values of R,  the cross-flow Reynold’s number, and k, the viscoelastic parameter. (--) the 
values for a non-Newtonian fluid (----): the values for a Newtonian fluid. Curve a: R =  1, k=O; Curve b R =  1, k=0.1;  
Curve c: R =  1, k=0-2, Curve c: R =  10, k=O; Curve d R =  10, k=0.01; Curve e: R =  10, k=0.02; Curve f:  R =  100, k = O ;  

Curve g: R=100, k=0901; Curve h: R=100, k = 0 9 0 2 .  
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respectively. It is further assumed that L2 9 L1 9 d ,  so that the edge effects can be ignored and the 
isobars are parallel to the z-axis. 

For a Newtonian fluid, Wang and SkalakIz have demonstrated that the Navier-Stokes 
equations admit a similarity solution, if the velocity components (u, u, w) are chosen as 

vx gd2p 
u = d f ( q ) ,  u= - Vf(q) and w=- h(q) ,  

rl0 
where 

Y q = -  
d 

and g is the acceleration due to gravity. 

for a Walter’s B’ fluid. For the latter fluid, we obtain the following BVPs forfand h :  
It turns out that the same choice of the velocity components also leads to a similarity solution 

f”’ + R ( ff ” - f ” )  + R k ( ff ” - 2 f’f”‘ +f”’) = A 

h” + Rfh’  + 1 + Rk( fh”‘ - 2 f ’  h” -f”h’) =o, 
(107) 

(108) 
with the boundary conditions 

f(O)=O f‘(O)=O, f ( l )=  1, f ’ ( l )=O,  h(O)=O, h(l)=O. (109) 
Further, p ,  the pressure at any point is 

As in the problem of porous slider, the BVP for f is exactly the same as for the flow of 
viscoelastic fluid through a porous channel, and is given by equations (26) and (27). Thus, the 
BVP forfis fundamental for all the three problems considered in the present paper. The BVP for 
h (equations (108) and (log)), on the other hand, is similar to the one for h for the problem of 
porous slider; the difference arising out of the effects of gravity and the stationary nature of the 
wall y=O. In view of these similarities, our discussion in the present section will necessarily be 
brief. 

The exact numerical solution for h can be obtained by proceeding along the lines of Section 4.1. 
The perturbation solution for small R is given by 

[ 1:O 15 11 1 
h(?)=-q  2 (1  -q) + R --q --q4 +- 11’ 

41 V]--’14+_-15 5 17 ---.$ 9 +-q7 9 -- 9 8 13 13 
50400 672 840 700 280 140 315 1575 

+ R” -- q +-q - -p  

For k=O,  the above solution reduces to the one obtained by Wang and Skalak” for 
a Newtonian fluid. 

In Figure 11, h is plotted against q for various values of R and k. Consistent with the result of 
Skalak and Wang,12 as R is increased, h decreases for viscoelastic fluid as well. The behaviour of 



632 P. D. ARIEL 

Table IV. Variation of h'(0) with R and k using (i) exact numer- 
ical integration, (ii) perturbation solution for small R 

R k h'(0) 

Exact Perturbation 

0.2 0 0-498301 0.49830 1 
0.1 0509117 0-509126 
0.2 0.520937 0,520990 
0 5  0.56 1340 0.562825 
1 .o 0.623797 0653348 

1 0 0.490901 0.490853 
0.1 0.56 1760 0.561472 
0.2 0.639153 0.65809 1 
0.5 0.392773 1.103948 

2 0 0.480508 0.480079 
0.1 0.659399 0662556 
0.2 0.485984 0,949032 

h on viscoelasticity depends on the size of R. For smaller values of R, h increases with k for all 
values of q. The larger values of R cause oscillations in the values of h for viscoelastic fluids. 
Whereas near q = 0 an increase in the value of k for a given R leads to an increase in the value of h, 
or simply h'(O), the values of h can become less in certain ranges of values oft/ as the value of k is 
increased owing to the oscillations, which become more pronounced for large values of R.  

In Table IV, the values of h'(0) are presented using the exact numerical solution and the 
perturbation solution for small R, for various values of R and k. Once again, it is evident that the 
perturbation solution, even though obtained without making any assumption on the size of k, 
gives acceptable results only when both R and k are small ( R <  1 and kC0.2) .  

6. CONCLUSIONS 

In this paper we have considered primarily the flow of a viscoelastic fluid through a porous 
channel which has one wall impermeable. The flow is characterized by a BVP in which the order 
of differential equation exceeds the number of boundary conditions. An exact numerical solution 
is developed utilizing the algorithm given by the present author." It is found that the solutions 
for the non-Newtonian fluid are only possible if the value of k, the viscoelastic fluid parameter, is 
less than a critical value which is dependent on R, the cross-flow Reynold's number. This, 
therefore, places a limit on the value of Rk below which only the solutions are admissible. 
Consequently, the solutions reported in literature' for viscoelastic fluids for some range of values 
of R and k appear to be in error. The results of the present paper also cast doubts on other 
investigations undertaken so far of the flow problems of viscoelastic fluids through the channels 
and near the disks. These problems are currently under study and the results of the investigations 
will be reported in future communications. 

For the main problem, the solutions are also developed for small R and large R.  For the former 
case, an analytical solution is obtained using the perturbation technique up to the terms O(R'). 
Such solutions can be found extensively in the literature for various flow problems of viscoelastic 
fluids. The results of the present paper demonstrate that these solutions are valid only if the value 
of k, besides that of R ,  is also small. On the other hand, the asymptotic solution for large 
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R exhibits a close relationship with the corresponding solution for Hiemenz flow, and as long as 
the proper restriction on the value of Rk is taken into account, it produces results that are in 
reasonable agreement with the exact numerical results. 

We have, in addition, also investigated two related problems: (a) fluid dynamics of a long 
porous slider, and (b) injection of fluid through the side of a long vertical porous channel. For 
these problems there are additional BVPs with the same characteristics, namely, the order of 
differential equations exceeds the number of boundary conditions. Exact numerical solutions are 
obtained for these problems. Once again the perturbation solutions fail to give satisfactory results 
unless both R and k are small. Hence, we conclude that the perturbation solutions for the flow 
problems of viscoelastic fluids give acceptable solutions only when both the cross-flow Reynold’s 
number and the viscoelastic fluid parameter are small. For the general case, the exact solutions of 
the original set of equations must be sought rather than those of the perturbed sets. 
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